

qpass: Frontend for pass (the standard unix password manager)

Welcome to the documentation of qpass version 2.3! The
following sections are available:

	User documentation

	API documentation

	Change log

User documentation

The readme is the best place to start reading, it’s targeted at all users and
documents the command line interface:

	qpass: Frontend for pass (the standard unix password manager)
	Installation

	Usage
	Command line

	Why use pass?
	GPG encryption

	Git version control

	SSH secure transport

	History
	Support for multiple password stores

	About the name

	Contact

	License

API documentation

The following API documentation is automatically generated from the source code:

	API documentation
	qpass

	qpass.cli

	qpass.exceptions

Change log

The change log lists notable changes to the project:

	Changelog
	Release 2.3 (2018-12-03)

	Release 2.2.1 (2018-06-21)

	Release 2.2 (2018-04-26)

	Release 2.1 (2018-01-20)

	Release 2.0.2 (2017-11-20)

	Release 2.0.1 (2017-07-27)

	Release 2.0 (2017-07-27)

	Release 1.0.3 (2017-07-18)

	Release 1.0.2 (2017-07-18)

	Release 1.0.1 (2017-07-16)

	Release 1.0 (2017-07-16)

qpass: Frontend for pass (the standard unix password manager)

[image: _images/python-qpass.svg]
 [https://travis-ci.org/xolox/python-qpass][image: _images/badge.svg]
 [https://coveralls.io/r/xolox/python-qpass?branch=master]The qpass program is a simple command line frontend for pass [https://www.passwordstore.org/], the standard
unix password manager. It makes it very easy to quickly find and copy specific
passwords in your ~/.password-store to the clipboard. The package is
currently tested on cPython 2.6, 2.7, 3.4, 3.5, 3.6 and PyPy (2.7). It’s
intended to work on Linux as well as macOS, although it has only been tested on
Linux.

	Installation

	Usage

	Command line

	Why use pass?

	GPG encryption

	Git version control

	SSH secure transport

	History

	Support for multiple password stores

	About the name

	Contact

	License

Installation

The qpass package is available on PyPI [https://pypi.python.org/pypi/qpass] which means installation should be as
simple as:

$ pip install qpass

There’s actually a multitude of ways to install Python packages (e.g. the per
user site-packages directory [https://www.python.org/dev/peps/pep-0370/], virtual environments [http://docs.python-guide.org/en/latest/dev/virtualenvs/] or just installing
system wide) and I have no intention of getting into that discussion here, so
if this intimidates you then read up on your options before returning to these
instructions ;-).

Usage

There are two ways to use the qpass package: As the command line program
qpass and as a Python API. For details about the Python API please refer to
the API documentation available on Read the Docs [https://qpass.readthedocs.org]. The command line interface
is described below.

Command line

Usage: qpass [OPTIONS] KEYWORD..

Search your password store for the given keywords or patterns and copy the
password of the matching entry to the clipboard. When more than one entry
matches you will be prompted to select the password to copy.

If you provide more than one KEYWORD all of the given keywords must match,
in other words you’re performing an AND search instead of an OR search.

Instead of matching on keywords you can also enter just a few of the characters
in the name of a password, as long as those characters are in the right order.
Some examples to make this more concrete:

	The pattern ‘pe/zbx’ will match the name ‘Personal/Zabbix’.

	The pattern ‘ba/cc’ will match the name ‘Bank accounts/Creditcard’.

When a password is copied to the clipboard, any text after the first line will
be shown on the terminal, to share any additional details about the password
entry (for example the associated username or email address). The -q, --quiet
option suppresses this text.

Supported options:

	Option

	Description

	-e, --edit

	Edit the matching entry instead of copying it to the clipboard.

	-l, --list

	List the matching entries on standard output.

	-n, --no-clipboard

	Don’t copy the password of the matching entry to the clipboard, instead
show the password on the terminal (by default the password is copied to
the clipboard but not shown on the terminal).

	-p, --password-store=DIRECTORY

	Search the password store in DIRECTORY. If this option isn’t given
the password store is located using the $PASSWORD_STORE_DIR
environment variable. If that environment variable isn’t
set the directory ~/.password-store is used.

You can use the -p, --password-store option multiple times to search more
than one password store at the same time. No distinction is made between
passwords in different password stores, so the names of passwords need to
be recognizable and unique.

	-f, --filter=PATTERN

	Don’t show lines in the additional details which match the case insensitive
regular expression given by PATTERN. This can be used to avoid revealing
sensitive details on the terminal. You can use this option more than once.

	-x, --exclude=GLOB

	Ignore passwords whose name matches the given GLOB filename pattern.
This argument can be repeated to add multiple exclude patterns.

	-v, --verbose

	Increase logging verbosity (can be repeated).

	-q, --quiet

	Decrease logging verbosity (can be repeated).

	-h, --help

	Show this message and exit.

Why use pass?

In 2016 I was looking for a way to securely share passwords and other secrets
between my laptops and smartphones. I’m not going to bore you with the full
details of my quest to find the ultimate password manager but I can highlight a
few points about pass [https://www.passwordstore.org/] that are important to me:

	GPG encryption

	Git version control

	SSH secure transport

GPG encryption

GPG [https://en.wikipedia.org/wiki/GNU_Privacy_Guard] is a cornerstone of computer security and it’s open source. This means it
receives quite a lot of peer review, which makes it easier for me to trust
(versus do-it-yourself [https://security.stackexchange.com/a/18198] cryptography). Because pass [https://www.passwordstore.org/] uses GPG [https://en.wikipedia.org/wiki/GNU_Privacy_Guard] to implement its
encryption my trust extends directly to pass [https://www.passwordstore.org/]. Of course it also helps that I
had years of experience with GPG [https://en.wikipedia.org/wiki/GNU_Privacy_Guard] before I started using pass [https://www.passwordstore.org/] :-).

Git version control

The git [https://en.wikipedia.org/wiki/Git] integration in pass [https://www.passwordstore.org/] makes it very easy to keep your passwords under
version control and synchronize the passwords between multiple systems. Git [https://en.wikipedia.org/wiki/Git] is
a great version control system and while I sometimes get annoyed by the fact
that git pull automatically merges, it’s actually the perfect default
choice for a password store. As an added bonus you have a history of every
change you ever made to your passwords.

SSH secure transport

I’ve been using SSH [https://en.wikipedia.org/wiki/Secure_Shell] to access remote systems over secure connections for a
very long time now so I’m quite comfortable setting up and properly securing
SSH servers. In the case of pass [https://www.passwordstore.org/] I use SSH to synchronize my passwords between
my laptops and smartphones via a central server that hosts the private git
repository.

History

Shortly after starting to use pass [https://www.passwordstore.org/] I realized that I needed a quick and easy
way to copy any given password to the clipboard, something smarter than the
pass [https://www.passwordstore.org/] program.

I tried out several GUI frontends but to be honest each of them felt clumsy, I
guess that through my work as a system administrator and programmer I’ve grown
to prefer command line interfaces over graphical user interfaces :-). For a few
weeks I tried upass [https://pypi.python.org/pypi/upass] (a somewhat fancy command line interface) but the lack of
simple things like case insensitive search made me stop using it.

Out of frustration I hacked together a simple Python script that would perform
case insensitive substring searches on my passwords, copying the password to
the clipboard when there was exactly one match. I called the Python script
qpass, thinking that it was similar in purpose to upass [https://pypi.python.org/pypi/upass] but much quicker
for me to use, so q (for quick) instead of u.

After using that Python script for a while I noticed that case insensitive
substring searching still forced me to specify long and detailed patterns in
order to get a unique match. Experimenting with other ways to match unique
passwords I came up with the idea of performing a “fuzzy match” against the
pathname of the password (including the directory components). The fuzzy
searching where a pattern like e/z matches Personal/Zabbix has since
become my primary way of interacting with my password stores.

Support for multiple password stores

One great aspect of pass [https://www.passwordstore.org/] is the git [https://en.wikipedia.org/wiki/Git] integration that makes it easy to share a
password store between several devices 1 or people 2. This use case makes
it much more likely that you’ll end up using multiple password stores, which is
something that pass [https://www.passwordstore.org/] doesn’t specifically make easy.

This is why I added support for querying multiple password stores to qpass in
version 2.0. For now I’ve kept things simple which means no distinction is made
between passwords in different password stores, so the names of passwords need
to be recognizable and unique.

	1

	For example I synchronize my password store between my personal laptop
and my work laptop and I also have access to my password store on my
smartphones (thanks to the Android application Password Store [https://play.google.com/store/apps/details?id=com.zeapo.pwdstore]).

	2

	My team at work also uses pass [https://www.passwordstore.org/] so because I was already using pass [https://www.passwordstore.org/] for
personal use, I now find myself frequently searching through multiple
password stores.

About the name

As explained above I initially wrote and named qpass with no intention of ever
publishing it. However since then my team at work has started using pass [https://www.passwordstore.org/] to
manage a shared pasword store and ever since we started doing that I’ve missed
the ability to query that password store using qpass :-).

Publishing qpass as an open source project with a proper Python package
available on PyPI [https://pypi.python.org/pypi/qpass] provides a nice way to share qpass with my team and it also
forces me to maintain proper documentation and an automated test suite.

While considering whether to publish qpass I found that there’s an existing
password manager out there called QPass [http://qpass.sourceforge.net/].
I decided not to rename my project for the following reasons:

	While both projects are password managers, they are intended for very
different audiences (I’m expecting my end users to be power users that are
most likely system administrators and/or programmers).

	I consider the name of the executable of a GUI program to be a lot less
relevant than the name of the executable of a command line program. This is
because the GUI will most likely be started via an application launcher,
which means the executable doesn’t even need to be on the $PATH.

	Let’s be honest, pass [https://www.passwordstore.org/] is already for power users only, so my qpass frontend
is most likely not going to see a lot of users ;-).

Contact

The latest version of qpass is available on PyPI [https://pypi.python.org/pypi/qpass] and GitHub [https://github.com/xolox/python-qpass]. The
documentation is hosted on Read the Docs [https://qpass.readthedocs.org] and includes a changelog [https://qpass.readthedocs.io/en/latest/changelog.html]. For bug
reports please create an issue on GitHub [https://github.com/xolox/python-qpass]. If you have questions, suggestions,
etc. feel free to send me an e-mail at peter@peterodding.com.

License

This software is licensed under the MIT license [http://en.wikipedia.org/wiki/MIT_License].

© 2018 Peter Odding.

API documentation

The following documentation is based on the source code of version 2.3 of
the qpass package.

	qpass

	qpass.cli

	qpass.exceptions

qpass

Frontend for pass [https://www.passwordstore.org/], the standard unix password manager.

	
qpass.DEFAULT_DIRECTORY = '~/.password-store'

	The default password storage directory (a string).

The value of DEFAULT_DIRECTORY is normalized using
parse_path() [https://humanfriendly.readthedocs.io/en/latest/api.html#humanfriendly.parse_path].

	
qpass.DIRECTORY_VARIABLE = 'PASSWORD_STORE_DIR'

	The environment variable that sets the password storage directory (a string).

	
class qpass.AbstractPasswordStore(**kw)

	Abstract Python API to query passwords managed by pass [https://www.passwordstore.org/].

This abstract base class has two concrete subclasses:

	The QuickPass class manages multiple password stores as one.

	The PasswordStore class manages a single password store.

	
entries

	A list of PasswordEntry objects.

	
exclude_list

	A list of strings with filename patterns to ignore.

The fnmatch [https://docs.python.org/2/library/fnmatch.html#module-fnmatch] module is used for pattern matching. Filenames as
well as patterns are normalized to lowercase before pattern matching is
attempted.

Note

The exclude_list property is a custom_property [https://property-manager.readthedocs.io/en/latest/api.html#property_manager.custom_property]. You can change the value of this property using normal attribute assignment syntax. This property’s value is computed once (the first time it is accessed) and the result is cached. To clear the cached value you can use del [https://docs.python.org/2/reference/simple_stmts.html#del] or delattr() [https://docs.python.org/2/library/functions.html#delattr].

	
filtered_entries

	A list of PasswordEntry objects that don’t match the exclude list.

Note

The filtered_entries property is a cached_property [https://property-manager.readthedocs.io/en/latest/api.html#property_manager.cached_property]. This property’s value is computed once (the first time it is accessed) and the result is cached. To clear the cached value you can use del [https://docs.python.org/2/reference/simple_stmts.html#del] or delattr() [https://docs.python.org/2/library/functions.html#delattr].

	
fuzzy_search(*filters)

	Perform a “fuzzy” search that matches the given characters in the given order.

	Parameters

	filters – The pattern(s) to search for.

	Returns

	The matched password names (a list of strings).

	
select_entry(*arguments)

	Select a password from the available choices.

	Parameters

	arguments – Refer to smart_search().

	Returns

	The name of a password (a string) or None [https://docs.python.org/2/library/constants.html#None]
(when no password matched the given arguments).

	
simple_search(*keywords)

	Perform a simple search for case insensitive substring matches.

	Parameters

	keywords – The string(s) to search for.

	Returns

	The matched password names (a generator of strings).

Only passwords whose names matches all of the given keywords are
returned.

	
smart_search(*arguments)

	Perform a smart search on the given keywords or patterns.

	Parameters

	arguments – The keywords or patterns to search for.

	Returns

	The matched password names (a list of strings).

	Raises

	The following exceptions can be raised:

	NoMatchingPasswordError when no matching passwords are found.

	EmptyPasswordStoreError when the password store is empty.

This method first tries simple_search() and if that doesn’t
produce any matches it will fall back to fuzzy_search(). If no
matches are found an exception is raised (see above).

	
class qpass.QuickPass(**kw)

	Python API to query multiple password stores as if they are one.

	See also

	The PasswordStore class to query a single password store.

	
repr_properties = ['stores']

	The properties included in the output of repr() [https://docs.python.org/2/library/functions.html#repr].

	
entries

	A list of PasswordEntry objects.

Note

The entries property is a cached_property [https://property-manager.readthedocs.io/en/latest/api.html#property_manager.cached_property]. This property’s value is computed once (the first time it is accessed) and the result is cached. To clear the cached value you can use del [https://docs.python.org/2/reference/simple_stmts.html#del] or delattr() [https://docs.python.org/2/library/functions.html#delattr].

	
stores

	A list of PasswordStore objects.

Note

The stores property is a custom_property [https://property-manager.readthedocs.io/en/latest/api.html#property_manager.custom_property]. You can change the value of this property using normal attribute assignment syntax. This property’s value is computed once (the first time it is accessed) and the result is cached. To clear the cached value you can use del [https://docs.python.org/2/reference/simple_stmts.html#del] or delattr() [https://docs.python.org/2/library/functions.html#delattr].

	
class qpass.PasswordStore(**kw)

	Python API to query a single password store.

	See also

	The QuickPass class to query multiple password stores.

	
repr_properties = ['directory', 'entries']

	The properties included in the output of repr() [https://docs.python.org/2/library/functions.html#repr].

	
context

	An execution context created using executor.contexts [https://executor.readthedocs.io/en/latest/api.html#module-executor.contexts].

The value of context defaults to a
LocalContext [https://executor.readthedocs.io/en/latest/api.html#executor.contexts.LocalContext] object with the following
characteristics:

	The working directory of the execution context is set to the
value of directory.

	The environment variable given by DIRECTORY_VARIABLE is set
to the value of directory.

	Raises

	MissingPasswordStoreError when directory
doesn’t exist.

Note

The context property is a custom_property [https://property-manager.readthedocs.io/en/latest/api.html#property_manager.custom_property]. You can change the value of this property using normal attribute assignment syntax. This property’s value is computed once (the first time it is accessed) and the result is cached. To clear the cached value you can use del [https://docs.python.org/2/reference/simple_stmts.html#del] or delattr() [https://docs.python.org/2/library/functions.html#delattr].

	
directory

	The pathname of the password storage directory (a string).

When the environment variable given by DIRECTORY_VARIABLE is
set the value of that environment variable is used, otherwise
DEFAULT_DIRECTORY is used. In either case the resulting
directory pathname is normalized using
parse_path() [https://humanfriendly.readthedocs.io/en/latest/api.html#humanfriendly.parse_path].

When you set the directory property, the value you set will be
normalized using parse_path() [https://humanfriendly.readthedocs.io/en/latest/api.html#humanfriendly.parse_path] and the computed
value of the context property is cleared.

Note

The directory property is a custom_property [https://property-manager.readthedocs.io/en/latest/api.html#property_manager.custom_property]. You can change the value of this property using normal attribute assignment syntax. This property’s value is computed once (the first time it is accessed) and the result is cached. To clear the cached value you can use del [https://docs.python.org/2/reference/simple_stmts.html#del] or delattr() [https://docs.python.org/2/library/functions.html#delattr].

	
entries

	A list of PasswordEntry objects.

Note

The entries property is a cached_property [https://property-manager.readthedocs.io/en/latest/api.html#property_manager.cached_property]. This property’s value is computed once (the first time it is accessed) and the result is cached. To clear the cached value you can use del [https://docs.python.org/2/reference/simple_stmts.html#del] or delattr() [https://docs.python.org/2/library/functions.html#delattr].

	
ensure_directory_exists()

	Make sure directory exists.

	Raises

	MissingPasswordStoreError when the password storage
directory doesn’t exist.

	
class qpass.PasswordEntry(**kw)

	PasswordEntry objects bind the name of a password to the store that contains the password.

	
repr_properties = ['name']

	The properties included in the output of repr() [https://docs.python.org/2/library/functions.html#repr].

	
context

	The context of store.

	
name

	The name of the password store entry (a string).

Note

The name property is a required_property [https://property-manager.readthedocs.io/en/latest/api.html#property_manager.required_property]. You are required to provide a value for this property by calling the constructor of the class that defines the property with a keyword argument named name (unless a custom constructor is defined, in this case please refer to the documentation of that constructor). You can change the value of this property using normal attribute assignment syntax.

	
password

	The password identified by name (a string).

Note

The password property is a cached_property [https://property-manager.readthedocs.io/en/latest/api.html#property_manager.cached_property]. This property’s value is computed once (the first time it is accessed) and the result is cached. To clear the cached value you can use del [https://docs.python.org/2/reference/simple_stmts.html#del] or delattr() [https://docs.python.org/2/library/functions.html#delattr].

	
store

	The PasswordStore that contains the entry.

Note

The store property is a required_property [https://property-manager.readthedocs.io/en/latest/api.html#property_manager.required_property]. You are required to provide a value for this property by calling the constructor of the class that defines the property with a keyword argument named store (unless a custom constructor is defined, in this case please refer to the documentation of that constructor). You can change the value of this property using normal attribute assignment syntax.

	
text

	The full text of the entry (a string).

Note

The text property is a cached_property [https://property-manager.readthedocs.io/en/latest/api.html#property_manager.cached_property]. This property’s value is computed once (the first time it is accessed) and the result is cached. To clear the cached value you can use del [https://docs.python.org/2/reference/simple_stmts.html#del] or delattr() [https://docs.python.org/2/library/functions.html#delattr].

	
copy_password()

	Copy the password to the clipboard.

	
format_text(include_password=True, use_colors=None, padding=True, filters=())

	Format text for viewing on a terminal.

	Parameters

	
	include_password – True [https://docs.python.org/2/library/constants.html#True] to include the password in the
formatted text, False [https://docs.python.org/2/library/constants.html#False] to exclude the
password from the formatted text.

	use_colors – True [https://docs.python.org/2/library/constants.html#True] to use ANSI escape sequences,
False [https://docs.python.org/2/library/constants.html#False] otherwise. When this is None [https://docs.python.org/2/library/constants.html#None]
terminal_supports_colors() [https://humanfriendly.readthedocs.io/en/latest/api.html#humanfriendly.terminal.terminal_supports_colors]
will be used to detect whether ANSI escape sequences
are supported.

	padding – True [https://docs.python.org/2/library/constants.html#True] to add empty lines before and after the
entry and indent the entry’s text with two spaces,
False [https://docs.python.org/2/library/constants.html#False] to skip the padding.

	filters – An iterable of regular expression patterns (defaults to
an empty tuple). If a line in the entry’s text matches
one of these patterns it won’t be shown on the
terminal.

	Returns

	The formatted entry (a string).

	
qpass.create_fuzzy_pattern(pattern)

	Convert a string into a fuzzy regular expression pattern.

	Parameters

	pattern – The input pattern (a string).

	Returns

	A compiled regular expression object.

This function works by adding .* between each of the characters in the
input pattern and compiling the resulting expression into a case
insensitive regular expression.

qpass.cli

Usage: qpass [OPTIONS] KEYWORD..

Search your password store for the given keywords or patterns and copy the
password of the matching entry to the clipboard. When more than one entry
matches you will be prompted to select the password to copy.

If you provide more than one KEYWORD all of the given keywords must match,
in other words you’re performing an AND search instead of an OR search.

Instead of matching on keywords you can also enter just a few of the characters
in the name of a password, as long as those characters are in the right order.
Some examples to make this more concrete:

	The pattern ‘pe/zbx’ will match the name ‘Personal/Zabbix’.

	The pattern ‘ba/cc’ will match the name ‘Bank accounts/Creditcard’.

When a password is copied to the clipboard, any text after the first line will
be shown on the terminal, to share any additional details about the password
entry (for example the associated username or email address). The -q, --quiet
option suppresses this text.

Supported options:

	Option

	Description

	-e, --edit

	Edit the matching entry instead of copying it to the clipboard.

	-l, --list

	List the matching entries on standard output.

	-n, --no-clipboard

	Don’t copy the password of the matching entry to the clipboard, instead
show the password on the terminal (by default the password is copied to
the clipboard but not shown on the terminal).

	-p, --password-store=DIRECTORY

	Search the password store in DIRECTORY. If this option isn’t given
the password store is located using the $PASSWORD_STORE_DIR
environment variable. If that environment variable isn’t
set the directory ~/.password-store is used.

You can use the -p, --password-store option multiple times to search more
than one password store at the same time. No distinction is made between
passwords in different password stores, so the names of passwords need to
be recognizable and unique.

	-f, --filter=PATTERN

	Don’t show lines in the additional details which match the case insensitive
regular expression given by PATTERN. This can be used to avoid revealing
sensitive details on the terminal. You can use this option more than once.

	-x, --exclude=GLOB

	Ignore passwords whose name matches the given GLOB filename pattern.
This argument can be repeated to add multiple exclude patterns.

	-v, --verbose

	Increase logging verbosity (can be repeated).

	-q, --quiet

	Decrease logging verbosity (can be repeated).

	-h, --help

	Show this message and exit.

	
qpass.cli.main()

	Command line interface for the qpass program.

	
qpass.cli.edit_matching_entry(program, arguments)

	Edit the matching entry.

	
qpass.cli.list_matching_entries(program, arguments)

	List the entries matching the given keywords/patterns.

	
qpass.cli.show_matching_entry(program, arguments, use_clipboard=True, quiet=False, filters=())

	Show the matching entry on the terminal (and copy the password to the clipboard).

qpass.exceptions

Custom exceptions raised by qpass.

	
exception qpass.exceptions.PasswordStoreError

	Base class for custom exceptions raised by qpass.

	
exception qpass.exceptions.MissingPasswordStoreError

	Raised when the password store directory doesn’t exist.

	
exception qpass.exceptions.EmptyPasswordStoreError

	Raised when the password store is empty.

	
exception qpass.exceptions.NoMatchingPasswordError

	Raised when no matching password can be selected.

Changelog

The purpose of this document is to list all of the notable changes to this
project. The format was inspired by Keep a Changelog [http://keepachangelog.com/]. This project adheres
to semantic versioning [http://semver.org/].

	Release 2.3 (2018-12-03)

	Release 2.2.1 (2018-06-21)

	Release 2.2 (2018-04-26)

	Release 2.1 (2018-01-20)

	Release 2.0.2 (2017-11-20)

	Release 2.0.1 (2017-07-27)

	Release 2.0 (2017-07-27)

	Release 1.0.3 (2017-07-18)

	Release 1.0.2 (2017-07-18)

	Release 1.0.1 (2017-07-16)

	Release 1.0 (2017-07-16)

Release 2.3 [https://github.com/xolox/python-qpass/compare/2.2.1...2.3] (2018-12-03)

Add support for exclude lists (qpass -x or qpass --exclude=GLOB).

Explaining how I got here requires a bit of context:

	For several years now I’ve been using Google Authenticator [https://play.google.com/store/apps/details?id=com.google.android.apps.authenticator2] for two-factor
authentication (2FA) to online services like GitHub and Trello. Unfortunately
Google Authenticator is quite bare bones in that it doesn’t allow to export
the configured 2FA accounts, which implies that switching phones requires
resetting the 2FA configuration of a dozen online services…

	As a workaround you can store the “account configuration token” (the text
behind the QR code that you scan) that’s available when an account is
configured in a secure location (explanation available here [https://android.stackexchange.com/a/183010/273993]). This
explains why I recently decided to reinitialize the 2FA configuration of all
my online accounts (one last time 😛) so that I can store the tokens in my
password store.

	My 2FA tokens are encrypted with a separate, dedicated GPG key pair (with a
stronger password) to ensure that the password to each online service is
unlocked with a different secret than the 2FA token (so as not to completely
undermine the second factor).

	So now whenever I run something like qpass github I get offered two
matches and I need to make a choice, even though that choice will always be
the same (the 2FA tokens are stored only as backups).

	Thanks to this qpass release I’m now able to configure the alias qpass
--exclude='*2fa*' in my ~/.zshrc so that I never have to be bothered by
the entries containing the 2FA tokens again 😇.

Release 2.2.1 [https://github.com/xolox/python-qpass/compare/2.2...2.2.1] (2018-06-21)

Bumped proc requirement to version 0.15 to pull in an upstream bug fix
for hanging Travis CI builds caused by gpg-agent not detaching to the
background properly because the standard error stream was redirected.

Lots of improvements were made to the proc.gpg module in proc release 0.15
and I consider the GPG agent functionality to be quite relevant for
qpass, so this warrants a bug fix release.

Release 2.2 [https://github.com/xolox/python-qpass/compare/2.1...2.2] (2018-04-26)

	Added this changelog.

	Added license key to setup.py script.

Release 2.1 [https://github.com/xolox/python-qpass/compare/2.0.2...2.1] (2018-01-20)

The focus of this release was on hiding of sensitive details (fixes #1 [https://github.com/xolox/python-qpass/issues/1]):

	Made qpass --quiet hide password entry details (related to #1 [https://github.com/xolox/python-qpass/issues/1]).

	Made qpass -f ignore ... hide specific details (related to #1 [https://github.com/xolox/python-qpass/issues/1]).

	Shuffled text processing order in format_entry()

	Included documentation in source distributions.

Release 2.0.2 [https://github.com/xolox/python-qpass/compare/2.0.1...2.0.2] (2017-11-20)

Bug fix for default password store discovery in CLI.

Release 2.0.1 [https://github.com/xolox/python-qpass/compare/2.0...2.0.1] (2017-07-27)

Minor bug fixes (update __all__, fix heading in README.rst).

Release 2.0 [https://github.com/xolox/python-qpass/compare/1.0.3...2.0] (2017-07-27)

Added support for multiple password stores.

Release 1.0.3 [https://github.com/xolox/python-qpass/compare/1.0.2...1.0.3] (2017-07-18)

Bug fix for previous commit :-).

Release 1.0.2 [https://github.com/xolox/python-qpass/compare/1.0.1...1.0.2] (2017-07-18)

Bug fix: Don’t print superfluous whitespace for ‘empty’ entries.

Release 1.0.1 [https://github.com/xolox/python-qpass/compare/1.0...1.0.1] (2017-07-16)

Bug fix: Ignore failing tty commands.

Release 1.0 [https://github.com/xolox/python-qpass/tree/1.0] (2017-07-16)

Initial commit and release.

 Python Module Index

 q

 		 	

 		
 q	

 	[image: -]
 	
 qpass	

 	
 	
 qpass.cli	

 	
 	
 qpass.exceptions	

Index

 A
 | C
 | D
 | E
 | F
 | L
 | M
 | N
 | P
 | Q
 | R
 | S
 | T

A

 	
 	AbstractPasswordStore (class in qpass)

C

 	
 	context (qpass.PasswordEntry attribute)

 	(qpass.PasswordStore attribute)

 	
 	copy_password() (qpass.PasswordEntry method)

 	create_fuzzy_pattern() (in module qpass)

D

 	
 	DEFAULT_DIRECTORY (in module qpass)

 	
 	directory (qpass.PasswordStore attribute)

 	DIRECTORY_VARIABLE (in module qpass)

E

 	
 	edit_matching_entry() (in module qpass.cli)

 	EmptyPasswordStoreError

 	ensure_directory_exists() (qpass.PasswordStore method)

 	
 	entries (qpass.AbstractPasswordStore attribute)

 	(qpass.PasswordStore attribute)

 	(qpass.QuickPass attribute)

 	exclude_list (qpass.AbstractPasswordStore attribute)

F

 	
 	filtered_entries (qpass.AbstractPasswordStore attribute)

 	
 	format_text() (qpass.PasswordEntry method)

 	fuzzy_search() (qpass.AbstractPasswordStore method)

L

 	
 	list_matching_entries() (in module qpass.cli)

M

 	
 	main() (in module qpass.cli)

 	
 	MissingPasswordStoreError

N

 	
 	name (qpass.PasswordEntry attribute)

 	
 	NoMatchingPasswordError

P

 	
 	password (qpass.PasswordEntry attribute)

 	PasswordEntry (class in qpass)

 	
 	PasswordStore (class in qpass)

 	PasswordStoreError

Q

 	
 	qpass (module)

 	qpass.cli (module)

 	
 	qpass.exceptions (module)

 	QuickPass (class in qpass)

R

 	
 	repr_properties (qpass.PasswordEntry attribute)

 	(qpass.PasswordStore attribute)

 	(qpass.QuickPass attribute)

S

 	
 	select_entry() (qpass.AbstractPasswordStore method)

 	show_matching_entry() (in module qpass.cli)

 	simple_search() (qpass.AbstractPasswordStore method)

 	
 	smart_search() (qpass.AbstractPasswordStore method)

 	store (qpass.PasswordEntry attribute)

 	stores (qpass.QuickPass attribute)

T

 	
 	text (qpass.PasswordEntry attribute)

 _static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 qpass: Frontend for pass (the standard unix password manager)

 		
 qpass: Frontend for pass (the standard unix password manager)

 		
 Installation

 		
 Usage

 		
 Command line

 		
 Why use pass?

 		
 GPG encryption

 		
 Git version control

 		
 SSH secure transport

 		
 History

 		
 Support for multiple password stores

 		
 About the name

 		
 Contact

 		
 License

 		
 API documentation

 		
 qpass

 		
 qpass.cli

 		
 qpass.exceptions

 		
 Changelog

 		
 Release 2.3 (2018-12-03)

 		
 Release 2.2.1 (2018-06-21)

 		
 Release 2.2 (2018-04-26)

 		
 Release 2.1 (2018-01-20)

 		
 Release 2.0.2 (2017-11-20)

 		
 Release 2.0.1 (2017-07-27)

 		
 Release 2.0 (2017-07-27)

 		
 Release 1.0.3 (2017-07-18)

 		
 Release 1.0.2 (2017-07-18)

 		
 Release 1.0.1 (2017-07-16)

 		
 Release 1.0 (2017-07-16)

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/up.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

