
qpass
Release 2.3

Dec 03, 2018

Contents

1 User documentation 3
1.1 qpass: Frontend for pass (the standard unix password manager) . 3

2 API documentation 9
2.1 API documentation . 9

3 Change log 15
3.1 Changelog . 15

Python Module Index 19

i

ii

qpass, Release 2.3

Welcome to the documentation of qpass version 2.3! The following sections are available:

• User documentation

• API documentation

• Change log

Contents 1

qpass, Release 2.3

2 Contents

CHAPTER 1

User documentation

The readme is the best place to start reading, it’s targeted at all users and documents the command line interface:

1.1 qpass: Frontend for pass (the standard unix password manager)

The qpass program is a simple command line frontend for pass, the standard unix password manager. It makes it very
easy to quickly find and copy specific passwords in your ~/.password-store to the clipboard. The package is
currently tested on cPython 2.6, 2.7, 3.4, 3.5, 3.6 and PyPy (2.7). It’s intended to work on Linux as well as macOS,
although it has only been tested on Linux.

• Installation

• Usage

– Command line

• Why use pass?

– GPG encryption

– Git version control

– SSH secure transport

• History

– Support for multiple password stores

– About the name

• Contact

• License

3

https://travis-ci.org/xolox/python-qpass
https://coveralls.io/r/xolox/python-qpass?branch=master
https://www.passwordstore.org/

qpass, Release 2.3

1.1.1 Installation

The qpass package is available on PyPI which means installation should be as simple as:

$ pip install qpass

There’s actually a multitude of ways to install Python packages (e.g. the per user site-packages directory, virtual
environments or just installing system wide) and I have no intention of getting into that discussion here, so if this
intimidates you then read up on your options before returning to these instructions ;-).

1.1.2 Usage

There are two ways to use the qpass package: As the command line program qpass and as a Python API. For details
about the Python API please refer to the API documentation available on Read the Docs. The command line interface
is described below.

Command line

Usage: qpass [OPTIONS] KEYWORD..

Search your password store for the given keywords or patterns and copy the password of the matching entry to the
clipboard. When more than one entry matches you will be prompted to select the password to copy.

If you provide more than one KEYWORD all of the given keywords must match, in other words you’re performing an
AND search instead of an OR search.

Instead of matching on keywords you can also enter just a few of the characters in the name of a password, as long as
those characters are in the right order. Some examples to make this more concrete:

• The pattern ‘pe/zbx’ will match the name ‘Personal/Zabbix’.

• The pattern ‘ba/cc’ will match the name ‘Bank accounts/Creditcard’.

When a password is copied to the clipboard, any text after the first line will be shown on the terminal, to share any
additional details about the password entry (for example the associated username or email address). The -q, --quiet
option suppresses this text.

Supported options:

4 Chapter 1. User documentation

https://pypi.python.org/pypi/qpass
https://www.python.org/dev/peps/pep-0370/
http://docs.python-guide.org/en/latest/dev/virtualenvs/
http://docs.python-guide.org/en/latest/dev/virtualenvs/
https://qpass.readthedocs.org

qpass, Release 2.3

Option Description
-e, --edit Edit the matching entry instead of copying it to the clipboard.
-l, --list List the matching entries on standard output.
-n, --no-clipboard Don’t copy the password of the matching entry to the clipboard, instead show

the password on the terminal (by default the password is copied to the clipboard
but not shown on the terminal).

-p,
--password-store=DIRECTORY

Search the password store in DIRECTORY. If this option isn’t given the pass-
word store is located using the $PASSWORD_STORE_DIR environment vari-
able. If that environment variable isn’t set the directory ~/.password-store is
used.
You can use the -p, --password-store option multiple times to search
more than one password store at the same time. No distinction is made between
passwords in different password stores, so the names of passwords need to be
recognizable and unique.

-f, --filter=PATTERN Don’t show lines in the additional details which match the case insensitive regu-
lar expression given by PATTERN. This can be used to avoid revealing sensitive
details on the terminal. You can use this option more than once.

-x, --exclude=GLOB Ignore passwords whose name matches the given GLOB filename pattern. This
argument can be repeated to add multiple exclude patterns.

-v, --verbose Increase logging verbosity (can be repeated).
-q, --quiet Decrease logging verbosity (can be repeated).
-h, --help Show this message and exit.

1.1.3 Why use pass?

In 2016 I was looking for a way to securely share passwords and other secrets between my laptops and smartphones.
I’m not going to bore you with the full details of my quest to find the ultimate password manager but I can highlight a
few points about pass that are important to me:

• GPG encryption

• Git version control

• SSH secure transport

GPG encryption

GPG is a cornerstone of computer security and it’s open source. This means it receives quite a lot of peer review,
which makes it easier for me to trust (versus do-it-yourself cryptography). Because pass uses GPG to implement its
encryption my trust extends directly to pass. Of course it also helps that I had years of experience with GPG before I
started using pass :-).

Git version control

The git integration in pass makes it very easy to keep your passwords under version control and synchronize the
passwords between multiple systems. Git is a great version control system and while I sometimes get annoyed by the
fact that git pull automatically merges, it’s actually the perfect default choice for a password store. As an added
bonus you have a history of every change you ever made to your passwords.

1.1. qpass: Frontend for pass (the standard unix password manager) 5

https://www.passwordstore.org/
https://en.wikipedia.org/wiki/GNU_Privacy_Guard
https://security.stackexchange.com/a/18198
https://www.passwordstore.org/
https://en.wikipedia.org/wiki/GNU_Privacy_Guard
https://www.passwordstore.org/
https://en.wikipedia.org/wiki/GNU_Privacy_Guard
https://www.passwordstore.org/
https://en.wikipedia.org/wiki/Git
https://www.passwordstore.org/
https://en.wikipedia.org/wiki/Git

qpass, Release 2.3

SSH secure transport

I’ve been using SSH to access remote systems over secure connections for a very long time now so I’m quite com-
fortable setting up and properly securing SSH servers. In the case of pass I use SSH to synchronize my passwords
between my laptops and smartphones via a central server that hosts the private git repository.

1.1.4 History

Shortly after starting to use pass I realized that I needed a quick and easy way to copy any given password to the
clipboard, something smarter than the pass program.

I tried out several GUI frontends but to be honest each of them felt clumsy, I guess that through my work as a system
administrator and programmer I’ve grown to prefer command line interfaces over graphical user interfaces :-). For a
few weeks I tried upass (a somewhat fancy command line interface) but the lack of simple things like case insensitive
search made me stop using it.

Out of frustration I hacked together a simple Python script that would perform case insensitive substring searches on
my passwords, copying the password to the clipboard when there was exactly one match. I called the Python script
qpass, thinking that it was similar in purpose to upass but much quicker for me to use, so q (for quick) instead of u.

After using that Python script for a while I noticed that case insensitive substring searching still forced me to specify
long and detailed patterns in order to get a unique match. Experimenting with other ways to match unique passwords
I came up with the idea of performing a “fuzzy match” against the pathname of the password (including the directory
components). The fuzzy searching where a pattern like e/z matches Personal/Zabbix has since become my
primary way of interacting with my password stores.

Support for multiple password stores

One great aspect of pass is the git integration that makes it easy to share a password store between several devices1

or people2. This use case makes it much more likely that you’ll end up using multiple password stores, which is
something that pass doesn’t specifically make easy.

This is why I added support for querying multiple password stores to qpass in version 2.0. For now I’ve kept things
simple which means no distinction is made between passwords in different password stores, so the names of passwords
need to be recognizable and unique.

About the name

As explained above I initially wrote and named qpass with no intention of ever publishing it. However since then my
team at work has started using pass to manage a shared pasword store and ever since we started doing that I’ve missed
the ability to query that password store using qpass :-).

Publishing qpass as an open source project with a proper Python package available on PyPI provides a nice way to
share qpass with my team and it also forces me to maintain proper documentation and an automated test suite.

While considering whether to publish qpass I found that there’s an existing password manager out there called QPass.
I decided not to rename my project for the following reasons:

• While both projects are password managers, they are intended for very different audiences (I’m expecting my
end users to be power users that are most likely system administrators and/or programmers).

1 For example I synchronize my password store between my personal laptop and my work laptop and I also have access to my password store
on my smartphones (thanks to the Android application Password Store).

2 My team at work also uses pass so because I was already using pass for personal use, I now find myself frequently searching through multiple
password stores.

6 Chapter 1. User documentation

https://en.wikipedia.org/wiki/Secure_Shell
https://www.passwordstore.org/
https://www.passwordstore.org/
https://www.passwordstore.org/
https://pypi.python.org/pypi/upass
https://pypi.python.org/pypi/upass
https://www.passwordstore.org/
https://en.wikipedia.org/wiki/Git
https://www.passwordstore.org/
https://www.passwordstore.org/
https://pypi.python.org/pypi/qpass
http://qpass.sourceforge.net/
https://play.google.com/store/apps/details?id=com.zeapo.pwdstore
https://www.passwordstore.org/
https://www.passwordstore.org/

qpass, Release 2.3

• I consider the name of the executable of a GUI program to be a lot less relevant than the name of the executable
of a command line program. This is because the GUI will most likely be started via an application launcher,
which means the executable doesn’t even need to be on the $PATH.

• Let’s be honest, pass is already for power users only, so my qpass frontend is most likely not going to see a lot
of users ;-).

1.1.5 Contact

The latest version of qpass is available on PyPI and GitHub. The documentation is hosted on Read the Docs and
includes a changelog. For bug reports please create an issue on GitHub. If you have questions, suggestions, etc. feel
free to send me an e-mail at peter@peterodding.com.

1.1.6 License

This software is licensed under the MIT license.

© 2018 Peter Odding.

1.1. qpass: Frontend for pass (the standard unix password manager) 7

https://www.passwordstore.org/
https://pypi.python.org/pypi/qpass
https://github.com/xolox/python-qpass
https://qpass.readthedocs.org
https://qpass.readthedocs.io/en/latest/changelog.html
https://github.com/xolox/python-qpass
mailto:peter@peterodding.com
http://en.wikipedia.org/wiki/MIT_License

qpass, Release 2.3

8 Chapter 1. User documentation

CHAPTER 2

API documentation

The following API documentation is automatically generated from the source code:

2.1 API documentation

The following documentation is based on the source code of version 2.3 of the qpass package.

• qpass

• qpass.cli

• qpass.exceptions

2.1.1 qpass

Frontend for pass, the standard unix password manager.

qpass.DEFAULT_DIRECTORY = '~/.password-store'
The default password storage directory (a string).

The value of DEFAULT_DIRECTORY is normalized using parse_path().

qpass.DIRECTORY_VARIABLE = 'PASSWORD_STORE_DIR'
The environment variable that sets the password storage directory (a string).

class qpass.AbstractPasswordStore(**kw)
Abstract Python API to query passwords managed by pass.

This abstract base class has two concrete subclasses:

• The QuickPass class manages multiple password stores as one.

• The PasswordStore class manages a single password store.

9

https://www.passwordstore.org/
https://humanfriendly.readthedocs.io/en/latest/api.html#humanfriendly.parse_path
https://www.passwordstore.org/

qpass, Release 2.3

entries
A list of PasswordEntry objects.

exclude_list
A list of strings with filename patterns to ignore.

The fnmatch module is used for pattern matching. Filenames as well as patterns are normalized to
lowercase before pattern matching is attempted.

Note: The exclude_list property is a custom_property. You can change the value of this
property using normal attribute assignment syntax. This property’s value is computed once (the first time
it is accessed) and the result is cached. To clear the cached value you can use del or delattr().

filtered_entries
A list of PasswordEntry objects that don’t match the exclude list.

Note: The filtered_entries property is a cached_property. This property’s value is com-
puted once (the first time it is accessed) and the result is cached. To clear the cached value you can use
del or delattr().

fuzzy_search(*filters)
Perform a “fuzzy” search that matches the given characters in the given order.

Parameters filters – The pattern(s) to search for.

Returns The matched password names (a list of strings).

select_entry(*arguments)
Select a password from the available choices.

Parameters arguments – Refer to smart_search().

Returns The name of a password (a string) or None (when no password matched the given
arguments).

simple_search(*keywords)
Perform a simple search for case insensitive substring matches.

Parameters keywords – The string(s) to search for.

Returns The matched password names (a generator of strings).

Only passwords whose names matches all of the given keywords are returned.

smart_search(*arguments)
Perform a smart search on the given keywords or patterns.

Parameters arguments – The keywords or patterns to search for.

Returns The matched password names (a list of strings).

Raises The following exceptions can be raised:

• NoMatchingPasswordError when no matching passwords are found.

• EmptyPasswordStoreError when the password store is empty.

This method first tries simple_search() and if that doesn’t produce any matches it will fall back to
fuzzy_search(). If no matches are found an exception is raised (see above).

10 Chapter 2. API documentation

https://docs.python.org/2/library/fnmatch.html#module-fnmatch
https://property-manager.readthedocs.io/en/latest/api.html#property_manager.custom_property
https://docs.python.org/2/reference/simple_stmts.html#del
https://docs.python.org/2/library/functions.html#delattr
https://property-manager.readthedocs.io/en/latest/api.html#property_manager.cached_property
https://docs.python.org/2/reference/simple_stmts.html#del
https://docs.python.org/2/library/functions.html#delattr
https://docs.python.org/2/library/constants.html#None

qpass, Release 2.3

class qpass.QuickPass(**kw)
Python API to query multiple password stores as if they are one.

See also The PasswordStore class to query a single password store.

repr_properties = ['stores']
The properties included in the output of repr().

entries
A list of PasswordEntry objects.

Note: The entries property is a cached_property. This property’s value is computed once
(the first time it is accessed) and the result is cached. To clear the cached value you can use del or
delattr().

stores
A list of PasswordStore objects.

Note: The stores property is a custom_property. You can change the value of this property using
normal attribute assignment syntax. This property’s value is computed once (the first time it is accessed)
and the result is cached. To clear the cached value you can use del or delattr().

class qpass.PasswordStore(**kw)
Python API to query a single password store.

See also The QuickPass class to query multiple password stores.

repr_properties = ['directory', 'entries']
The properties included in the output of repr().

context
An execution context created using executor.contexts.

The value of context defaults to a LocalContext object with the following characteristics:

• The working directory of the execution context is set to the value of directory .

• The environment variable given by DIRECTORY_VARIABLE is set to the value of directory .

Raises MissingPasswordStoreError when directory doesn’t exist.

Note: The context property is a custom_property. You can change the value of this property
using normal attribute assignment syntax. This property’s value is computed once (the first time it is
accessed) and the result is cached. To clear the cached value you can use del or delattr().

directory
The pathname of the password storage directory (a string).

When the environment variable given by DIRECTORY_VARIABLE is set the value of that environment
variable is used, otherwise DEFAULT_DIRECTORY is used. In either case the resulting directory path-
name is normalized using parse_path().

When you set the directory property, the value you set will be normalized using parse_path()
and the computed value of the context property is cleared.

2.1. API documentation 11

https://docs.python.org/2/library/functions.html#repr
https://property-manager.readthedocs.io/en/latest/api.html#property_manager.cached_property
https://docs.python.org/2/reference/simple_stmts.html#del
https://docs.python.org/2/library/functions.html#delattr
https://property-manager.readthedocs.io/en/latest/api.html#property_manager.custom_property
https://docs.python.org/2/reference/simple_stmts.html#del
https://docs.python.org/2/library/functions.html#delattr
https://docs.python.org/2/library/functions.html#repr
https://executor.readthedocs.io/en/latest/api.html#module-executor.contexts
https://executor.readthedocs.io/en/latest/api.html#executor.contexts.LocalContext
https://property-manager.readthedocs.io/en/latest/api.html#property_manager.custom_property
https://docs.python.org/2/reference/simple_stmts.html#del
https://docs.python.org/2/library/functions.html#delattr
https://humanfriendly.readthedocs.io/en/latest/api.html#humanfriendly.parse_path
https://humanfriendly.readthedocs.io/en/latest/api.html#humanfriendly.parse_path

qpass, Release 2.3

Note: The directory property is a custom_property. You can change the value of this property
using normal attribute assignment syntax. This property’s value is computed once (the first time it is
accessed) and the result is cached. To clear the cached value you can use del or delattr().

entries
A list of PasswordEntry objects.

Note: The entries property is a cached_property. This property’s value is computed once
(the first time it is accessed) and the result is cached. To clear the cached value you can use del or
delattr().

ensure_directory_exists()
Make sure directory exists.

Raises MissingPasswordStoreError when the password storage directory doesn’t exist.

class qpass.PasswordEntry(**kw)
PasswordEntry objects bind the name of a password to the store that contains the password.

repr_properties = ['name']
The properties included in the output of repr().

context
The context of store.

name
The name of the password store entry (a string).

Note: The name property is a required_property. You are required to provide a value for this prop-
erty by calling the constructor of the class that defines the property with a keyword argument named name
(unless a custom constructor is defined, in this case please refer to the documentation of that constructor).
You can change the value of this property using normal attribute assignment syntax.

password
The password identified by name (a string).

Note: The password property is a cached_property. This property’s value is computed once
(the first time it is accessed) and the result is cached. To clear the cached value you can use del or
delattr().

store
The PasswordStore that contains the entry.

Note: The store property is a required_property. You are required to provide a value for
this property by calling the constructor of the class that defines the property with a keyword argument
named store (unless a custom constructor is defined, in this case please refer to the documentation of that
constructor). You can change the value of this property using normal attribute assignment syntax.

text
The full text of the entry (a string).

12 Chapter 2. API documentation

https://property-manager.readthedocs.io/en/latest/api.html#property_manager.custom_property
https://docs.python.org/2/reference/simple_stmts.html#del
https://docs.python.org/2/library/functions.html#delattr
https://property-manager.readthedocs.io/en/latest/api.html#property_manager.cached_property
https://docs.python.org/2/reference/simple_stmts.html#del
https://docs.python.org/2/library/functions.html#delattr
https://docs.python.org/2/library/functions.html#repr
https://property-manager.readthedocs.io/en/latest/api.html#property_manager.required_property
https://property-manager.readthedocs.io/en/latest/api.html#property_manager.cached_property
https://docs.python.org/2/reference/simple_stmts.html#del
https://docs.python.org/2/library/functions.html#delattr
https://property-manager.readthedocs.io/en/latest/api.html#property_manager.required_property

qpass, Release 2.3

Note: The text property is a cached_property. This property’s value is computed once (the first
time it is accessed) and the result is cached. To clear the cached value you can use del or delattr().

copy_password()
Copy the password to the clipboard.

format_text(include_password=True, use_colors=None, padding=True, filters=())
Format text for viewing on a terminal.

Parameters

• include_password – True to include the password in the formatted text, False to
exclude the password from the formatted text.

• use_colors – True to use ANSI escape sequences, False otherwise. When this is
None terminal_supports_colors() will be used to detect whether ANSI escape
sequences are supported.

• padding – True to add empty lines before and after the entry and indent the entry’s text
with two spaces, False to skip the padding.

• filters – An iterable of regular expression patterns (defaults to an empty tuple). If a
line in the entry’s text matches one of these patterns it won’t be shown on the terminal.

Returns The formatted entry (a string).

qpass.create_fuzzy_pattern(pattern)
Convert a string into a fuzzy regular expression pattern.

Parameters pattern – The input pattern (a string).

Returns A compiled regular expression object.

This function works by adding .* between each of the characters in the input pattern and compiling the resulting
expression into a case insensitive regular expression.

2.1.2 qpass.cli

Usage: qpass [OPTIONS] KEYWORD..

Search your password store for the given keywords or patterns and copy the password of the matching entry to the
clipboard. When more than one entry matches you will be prompted to select the password to copy.

If you provide more than one KEYWORD all of the given keywords must match, in other words you’re performing an
AND search instead of an OR search.

Instead of matching on keywords you can also enter just a few of the characters in the name of a password, as long as
those characters are in the right order. Some examples to make this more concrete:

• The pattern ‘pe/zbx’ will match the name ‘Personal/Zabbix’.

• The pattern ‘ba/cc’ will match the name ‘Bank accounts/Creditcard’.

When a password is copied to the clipboard, any text after the first line will be shown on the terminal, to share any
additional details about the password entry (for example the associated username or email address). The -q, --quiet
option suppresses this text.

Supported options:

2.1. API documentation 13

https://property-manager.readthedocs.io/en/latest/api.html#property_manager.cached_property
https://docs.python.org/2/reference/simple_stmts.html#del
https://docs.python.org/2/library/functions.html#delattr
https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/constants.html#False
https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/constants.html#False
https://docs.python.org/2/library/constants.html#None
https://humanfriendly.readthedocs.io/en/latest/api.html#humanfriendly.terminal.terminal_supports_colors
https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/constants.html#False

qpass, Release 2.3

Option Description
-e, --edit Edit the matching entry instead of copying it to the clipboard.
-l, --list List the matching entries on standard output.
-n, --no-clipboard Don’t copy the password of the matching entry to the clipboard, instead show

the password on the terminal (by default the password is copied to the clipboard
but not shown on the terminal).

-p,
--password-store=DIRECTORY

Search the password store in DIRECTORY. If this option isn’t given the pass-
word store is located using the $PASSWORD_STORE_DIR environment vari-
able. If that environment variable isn’t set the directory ~/.password-store is
used.
You can use the -p, --password-store option multiple times to search
more than one password store at the same time. No distinction is made between
passwords in different password stores, so the names of passwords need to be
recognizable and unique.

-f, --filter=PATTERN Don’t show lines in the additional details which match the case insensitive regu-
lar expression given by PATTERN. This can be used to avoid revealing sensitive
details on the terminal. You can use this option more than once.

-x, --exclude=GLOB Ignore passwords whose name matches the given GLOB filename pattern. This
argument can be repeated to add multiple exclude patterns.

-v, --verbose Increase logging verbosity (can be repeated).
-q, --quiet Decrease logging verbosity (can be repeated).
-h, --help Show this message and exit.

qpass.cli.main()
Command line interface for the qpass program.

qpass.cli.edit_matching_entry(program, arguments)
Edit the matching entry.

qpass.cli.list_matching_entries(program, arguments)
List the entries matching the given keywords/patterns.

qpass.cli.show_matching_entry(program, arguments, use_clipboard=True, quiet=False, fil-
ters=())

Show the matching entry on the terminal (and copy the password to the clipboard).

2.1.3 qpass.exceptions

Custom exceptions raised by qpass.

exception qpass.exceptions.PasswordStoreError
Base class for custom exceptions raised by qpass.

exception qpass.exceptions.MissingPasswordStoreError
Raised when the password store directory doesn’t exist.

exception qpass.exceptions.EmptyPasswordStoreError
Raised when the password store is empty.

exception qpass.exceptions.NoMatchingPasswordError
Raised when no matching password can be selected.

14 Chapter 2. API documentation

CHAPTER 3

Change log

The change log lists notable changes to the project:

3.1 Changelog

The purpose of this document is to list all of the notable changes to this project. The format was inspired by Keep a
Changelog. This project adheres to semantic versioning.

• Release 2.3 (2018-12-03)

• Release 2.2.1 (2018-06-21)

• Release 2.2 (2018-04-26)

• Release 2.1 (2018-01-20)

• Release 2.0.2 (2017-11-20)

• Release 2.0.1 (2017-07-27)

• Release 2.0 (2017-07-27)

• Release 1.0.3 (2017-07-18)

• Release 1.0.2 (2017-07-18)

• Release 1.0.1 (2017-07-16)

• Release 1.0 (2017-07-16)

3.1.1 Release 2.3 (2018-12-03)

Add support for exclude lists (qpass -x or qpass --exclude=GLOB).

15

http://keepachangelog.com/
http://keepachangelog.com/
http://semver.org/

qpass, Release 2.3

Explaining how I got here requires a bit of context:

• For several years now I’ve been using Google Authenticator for two-factor authentication (2FA) to online ser-
vices like GitHub and Trello. Unfortunately Google Authenticator is quite bare bones in that it doesn’t allow to
export the configured 2FA accounts, which implies that switching phones requires resetting the 2FA configura-
tion of a dozen online services. . .

• As a workaround you can store the “account configuration token” (the text behind the QR code that you scan)
that’s available when an account is configured in a secure location (explanation available here). This explains
why I recently decided to reinitialize the 2FA configuration of all my online accounts (one last time) so that I
can store the tokens in my password store.

• My 2FA tokens are encrypted with a separate, dedicated GPG key pair (with a stronger password) to ensure
that the password to each online service is unlocked with a different secret than the 2FA token (so as not to
completely undermine the second factor).

• So now whenever I run something like qpass github I get offered two matches and I need to make a choice,
even though that choice will always be the same (the 2FA tokens are stored only as backups).

• Thanks to this qpass release I’m now able to configure the alias qpass --exclude='*2fa*' in my ~/.
zshrc so that I never have to be bothered by the entries containing the 2FA tokens again .

3.1.2 Release 2.2.1 (2018-06-21)

Bumped proc requirement to version 0.15 to pull in an upstream bug fix for hanging Travis CI builds caused by
gpg-agent not detaching to the background properly because the standard error stream was redirected.

Lots of improvements were made to the proc.gpg module in proc release 0.15 and I consider the GPG agent
functionality to be quite relevant for qpass, so this warrants a bug fix release.

3.1.3 Release 2.2 (2018-04-26)

• Added this changelog.

• Added license key to setup.py script.

3.1.4 Release 2.1 (2018-01-20)

The focus of this release was on hiding of sensitive details (fixes #1):

• Made qpass --quiet hide password entry details (related to #1).

• Made qpass -f ignore ... hide specific details (related to #1).

• Shuffled text processing order in format_entry()

• Included documentation in source distributions.

3.1.5 Release 2.0.2 (2017-11-20)

Bug fix for default password store discovery in CLI.

3.1.6 Release 2.0.1 (2017-07-27)

Minor bug fixes (update __all__, fix heading in README.rst).

16 Chapter 3. Change log

https://play.google.com/store/apps/details?id=com.google.android.apps.authenticator2
https://android.stackexchange.com/a/183010/273993
https://github.com/xolox/python-qpass/issues/1
https://github.com/xolox/python-qpass/issues/1
https://github.com/xolox/python-qpass/issues/1

qpass, Release 2.3

3.1.7 Release 2.0 (2017-07-27)

Added support for multiple password stores.

3.1.8 Release 1.0.3 (2017-07-18)

Bug fix for previous commit :-).

3.1.9 Release 1.0.2 (2017-07-18)

Bug fix: Don’t print superfluous whitespace for ‘empty’ entries.

3.1.10 Release 1.0.1 (2017-07-16)

Bug fix: Ignore failing tty commands.

3.1.11 Release 1.0 (2017-07-16)

Initial commit and release.

3.1. Changelog 17

qpass, Release 2.3

18 Chapter 3. Change log

Python Module Index

q
qpass, 9
qpass.cli, 13
qpass.exceptions, 14

19

qpass, Release 2.3

20 Python Module Index

Index

A
AbstractPasswordStore (class in qpass), 9

C
context (qpass.PasswordEntry attribute), 12
context (qpass.PasswordStore attribute), 11
copy_password() (qpass.PasswordEntry method), 13
create_fuzzy_pattern() (in module qpass), 13

D
DEFAULT_DIRECTORY (in module qpass), 9
directory (qpass.PasswordStore attribute), 11
DIRECTORY_VARIABLE (in module qpass), 9

E
edit_matching_entry() (in module qpass.cli), 14
EmptyPasswordStoreError, 14
ensure_directory_exists() (qpass.PasswordStore method),

12
entries (qpass.AbstractPasswordStore attribute), 9
entries (qpass.PasswordStore attribute), 12
entries (qpass.QuickPass attribute), 11
exclude_list (qpass.AbstractPasswordStore attribute), 10

F
filtered_entries (qpass.AbstractPasswordStore attribute),

10
format_text() (qpass.PasswordEntry method), 13
fuzzy_search() (qpass.AbstractPasswordStore method),

10

L
list_matching_entries() (in module qpass.cli), 14

M
main() (in module qpass.cli), 14
MissingPasswordStoreError, 14

N
name (qpass.PasswordEntry attribute), 12
NoMatchingPasswordError, 14

P
password (qpass.PasswordEntry attribute), 12
PasswordEntry (class in qpass), 12
PasswordStore (class in qpass), 11
PasswordStoreError, 14

Q
qpass (module), 9
qpass.cli (module), 13
qpass.exceptions (module), 14
QuickPass (class in qpass), 10

R
repr_properties (qpass.PasswordEntry attribute), 12
repr_properties (qpass.PasswordStore attribute), 11
repr_properties (qpass.QuickPass attribute), 11

S
select_entry() (qpass.AbstractPasswordStore method), 10
show_matching_entry() (in module qpass.cli), 14
simple_search() (qpass.AbstractPasswordStore method),

10
smart_search() (qpass.AbstractPasswordStore method),

10
store (qpass.PasswordEntry attribute), 12
stores (qpass.QuickPass attribute), 11

T
text (qpass.PasswordEntry attribute), 12

21

	User documentation
	qpass: Frontend for pass (the standard unix password manager)

	API documentation
	API documentation

	Change log
	Changelog

	Python Module Index

